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Basement membrane (BM) is a thin layer of extracellular matrix
that surrounds most animal tissues, serving as a physical barrier
while allowing nutrient exchange. Although they have important
roles in tissue structural integrity, physical properties of BMs
remain largely uncharacterized, which limits our understanding
of their mechanical functions. Here, we perform pressure-controlled
inflation and deflation to directly measure the nonlinear mechanics of
BMs in situ. We show that the BMs behave as a permeable, hypere-
lastic material whose mechanical properties and permeability can be
measured in amodel-independent manner. Furthermore, we find that
BMs exhibit a remarkable nonlinear stiffening behavior, in contrast to
the reconstituted Matrigel. This nonlinear stiffening behavior helps
the BMs to avoid the snap-through instability (or structural softening)
widely observed during the inflation of most elastomeric balloons
and thus maintain sufficient confining stress to the enclosed tissues
during their growth.

basement membrane | nonlinear mechanics | strain stiffening |
extracellular matrix | permeability

Basement membrane (BM) is a thin layer of fibrous matrix
separating cells from the connecting tissues, which functions

as a physical barrier and widely exists across multicellular or-
ganisms (1). The BM is typically composed of laminins, collagen
IV, nidogens, and proteoglycans; laminin and collagen IV are the
major components that constitute networks forming the struc-
ture of the BM, and nidogen and proteoglycans are associated
with the laminin and collagen IV networks. As a physical barrier,
the structural and mechanical properties of BM are important in
the organization and morphogenesis of tissues and organs as well
as in the maintenance of adult functions (2); abnormal BM has
been associated with a variety of diseases such as cancer (3). For
example, in metastasis, cancer cells must invade through BMs to
escape from the primary tumor—a process that causes 90% of
cancer-related death (4). Indeed, breaks in BMs can be observed
in malignant tumors (5). Thus, mechanical properties of the BM
are considered to play important roles in regulating cancer cell
invasion (6, 7). Furthermore, as a physical barrier differentiating
different parts of tissues, BMs are required to be permeable to
small molecules to allow exchange of water and nutrients; the
permeability of BM is thus one of the essential kinetic parame-
ters regulating biomolecule exchange and activities of internal
cells (8, 9). Given the importance of BMs as a semipermeable
barrier maintaining tissue structural integrity, however, their
permeability and mechanical properties remain largely unknown,
mainly due to the lack of direct measurement methods, espe-
cially in situ. This limits our understanding of the physical role of
BMs in various physiological and pathological processes such as
tumor development and angiogenesis.
Determining the mechanical properties of intact BMs in situ is

challenging because of their irregular shape, small thickness, and
tight connection to the cells inside. Due to these limitations, con-
ventional mechanical tests such as tensile, compression, and bend-
ing tests are difficult to be applied to characterize the mechanical
behavior of the BM in situ. Instead, previous measurements had
been carried out on fragmented BMs isolated from various tissues

(e.g., via atomic force microscopy [AFM] indentation) and found
that the BM stiffness ranges from ∼kPa to ∼MPa (10–17). In ad-
dition, a constitutive relationship is required to extract the material
parameters such as elastic modulus and permeability from these
experimental measurements. However, like most biological tissues,
a reliable constitutive model for the BM is not yet available, causing
additional difficulties in obtaining its mechanical parameters from
most traditional experiments.
In this work, we demonstrate an in situ method to simulta-

neously measure both the elastic properties and permeability of
intact BM in breast cancer spheroid by recording the deflation
process of an inflated BM filled with phosphate buffered saline
(PBS) by microinjection without requiring complex sample
preparation and post-data processing. During the deflation of
the BM, its elastic retraction generates a pressure difference to
drive the liquid flow through the membrane; the liquid flux can
be calculated from the reduction of the intact BM diameter.
With the BM thickness measured by transmission electron mi-
croscopy (TEM), we can determine the shear modulus, perme-
ability, and diffusivity of the intact BM. Moreover, we find from
our measurements that the elasticity of BM is highly nonlinear
with a strong strain-stiffening effect. Furthermore, we discuss the
possible impact of the strain-stiffening effects of BM on its
functions.

Significance

Basement membranes (BMs) are thin layers of extracellular
matrix ubiquitously found in animals surrounding various tis-
sues. As a physical barrier, their mechanical properties are im-
portant in maintaining structural integrity of tissues, and their
permeabilities are essential for molecule exchange and internal
cell activities. However, due to the lack of direct measurement
methods, the physical properties of BMs remain largely un-
clear, limiting our understanding of BMs in various physiolog-
ical and pathological processes such as tumor development.
Here, we apply pressure-controlled inflation/deflation to
measure the stress–strain behaviors of intact BM in situ and to
determine the mechanical properties in a model-independent
manner. We discover a strong strain-stiffening effect of intact
BM, which is essential for preventing its snap-through instability.
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Results
To investigate the mechanics of BM, we fabricate three-
dimensional breast cancer spheroids (18, 19). Briefly, individu-
al human breast cancer MDA-MB-231 cells are seeded onto a
gelled Matrigel bed (10 mg/mL) and are cultured to allow pro-
liferation for 5 d to form clusters. BM is secreted and generated
by cells during the growth of these multicellular cancer spher-
oids. After that, the intact cancer spheroids with BM are isolated
from the Matrigel and seeded on a glass-bottom Petri dish for
subsequent microinjection. The BM remains intact on these
cancer spheroids (Fig. 1 A and C).
To examine the structure of the BM of these cancer spheroids,

we first perform immunofluorescent imaging of the BM in
extracted spheroids by labeling laminin-5, one of the major
components of BM (Fig. 1C). Indeed, we see a continuous layer
of laminin-5 surrounding the cancer spheroid, suggesting that the
BM is nicely formed on these spheroids. To further investigate
the structure and thickness of these BMs, we perform TEM
imaging on in situ BM sections, which could preserve the original
condition of the BM. To do so, cancer cell spheroids that partly
embed in Matrigel are fixed on day 5, then sectioned and stained
according to established protocols (20). The cross-sections of the
spheroid above the Matrigel surface are collected and used for
TEM imaging. It is apparent that a gray layer of BM surrounds
the cell clusters inside (Fig. 1A). As we zoom in, clear fibrous
structures of the BM can be observed (Fig. 1B). From these
images, we find that the thickness of BM in our cancer spheroid
system is 2.5 ± 1.2 μm (Fig. 1D). Interestingly, the thickness of
BMs has obvious variations, even on the same spheroid. This is
likely to be a result of cell-to-cell variation as the BM is locally
generated by adjacent cells.

To study the mechanics of BM, we perform an inflation and
deflation experiment of the BM surrounding the spheroid in situ.
To do so, we use a microneedle (2 μm in diameter) to penetrate
the surrounding BM and place the needle tip inside the spheroid.
We then apply a constant pressure to inject PBS solution into the
spheroid via the microneedle. Both the injection pressure and its
duration are precisely controlled by a microinjector that connects
to the microneedle (Fig. 2A). Interestingly, upon a constant
pressure, we observe that the BM detaches from the inside cell
aggregations and inflates into a spherical shape like a latex bal-
loon; it rapidly inflates to a steady state (Fig. 2B), at which the
continuous PBS influx is balanced by the outflow through the
semipermeable membrane. When the fluid influx is turned off,
the inflated BM gradually deflates back to its initial size as a
result of the elasticity of the membrane, which drives the outflow
of liquid through the semipermeable BM. We find this inflation
and deflation process is highly reversible, suggesting that the BM
is deformed elastically during this process. Typically, to fully
separate the BM from the cell cluster, we perform several rounds
of inflation/deflation prior to final experiments. The spherical
shape of an inflated BM suggests that the BM is fully isolated
from cells (Fig. 2B); thus, its shape is dominated by the balance
of membrane tension and cross-membrane pressure difference.
To quantitatively investigate the inflation and deflation pro-

cess, we perform continuous imaging at 14 Hz via bright-field
microscopy to record the shape and size of a BM during this
process (Fig. 2C and Movie S1). This allows us to measure the
radius of the BM and its change over time, as shown by the
kymograph in Fig. 2C and quantification in Fig. 2D. The quan-
titative inflation and deflation curves indeed remain the same
over different loading cycles, demonstrating good resilience of
BM. Although the inflation process is rapid, especially under
large injection pressure, the deflation process is relatively slow,
as shown by the rapid increase and gradual decrease of BM ra-
dius (Fig. 2D). Furthermore, we repeat this experiment using
different injection pressures; as the injection pressure is in-
creased, the radius of the inflated BM at steady state is increased
accordingly (Fig. 2D and SI Appendix, Fig. S1).
To understand the steady-state inflation as well as the defla-

tion process of a BM, we consider a spherical membrane with
inner radius R0 and membrane thickness H prior to deformation
while no pressure is applied. With the inner fluid pressure p, the
inner radius increases to r, and wall thickness reduces to h. For
simplicity, in the following analysis, we assume the fluid pressure
is homogenous and neglect the inertial effect of the membrane
during the deflation because the process is relatively slow.
For an inflated spherical membrane, any point in the mem-

brane is in an equal-biaxial stress (and stretch) state. We denote
the equal-biaxial hoop stretch as λ and the stress as σ. Simple
geometrical analysis shows that the biaxial hoop stretch equals
the radial expansion, namely λ = r=R0. With different levels of
the inflation pressure p, the corresponding maximal stretches in
the steady state λmax = rmax=R0 of the membrane before the de-
flation begins are plotted in Fig. 3A. During the deflation pro-
cesses, the decreases of the radial expansion with time for five
different inflation pressures are shown in Fig. 3B. The water flux
J is related to the radius of the BM as J = −dr=dt with the as-
sumption of the incompressibility of water, thus the flux can be
plotted as a function of stretch for different experiments, as
J = J(λ) shown in Fig. 3C. Notably, the relationships between J
and λ obtained under different injection pressures on the same
BM overlap.
Next, we will show that the constitutive behavior of the

membrane can be directly deduced from the results shown in
Fig. 3 A and C. We assume the constitutive behavior of the
membrane subject to equal-biaxial stress (σ) is given by σ = σ(λ).
The force balance requires σ = pr=2h. With the commonly
adopted assumption for soft tissues that the membrane material

Fig. 1. TEM and fluorescence images of BMs in cancer spheroids. (A) In situ
TEM images of a cell spheroid partly embedded in Matrigel matrix. The top
cross-sections of the spheroid above the Matrigel surface are collected and
imaged. The gray layer surrounding the aggregated cells (marked as C) is the
BM. (Scale bar, 10 μm.) (B) A magnified image of the BM shows the fiber-like
structure. (Scale bar, 500 nm.) (C) Immunofluorescence images of laminin-5
in the BM (green) from an extracted cell spheroid. The cell nuclei are labeled
by Hoechst 33342 (blue). (Scale bar, 10 μm.) (D) The thickness of BMs mea-
sured from TEM images, with an average value 2.5 ± 1.2 μm. n = 85 mea-
surements from 11 spheroids.
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is incompressible, the thickness of the membrane after inflation can
be related to the stretch as h = Hλ−2. Consequently, the relation-
ship between biaxial membrane stress and internal fluid pressure
becomes σ(λ) = R0

2Hλ
3p(λ). Without requiring any material model or

assumption, using measured function p(λ) as shown in Fig. 3A, the
constitutive function σ(λ) can be fully determined with up to one
constant R0

2H. Both R0 and H can be easily obtained from bright-field
or TEM imaging. With measured R0 = 32.5μm andH = 2.5μm, we
obtain biaxial stress–stretch relationship σ(λ) of BM from
inflation–deflation tests, as shown by black circles in Fig. 3D.
We next compare the above experimentally determined con-

stitutive relationship with existing hyperelastic models. Based on
the shape of the function σ = σ(λ) shown in Fig. 3D, we choose
Fung’s hyperelastic model as an example. It can be shown that
with strain energy function proposed by Fung (21):
W = G

2b (eb(λ
2
1+λ22+λ23−3) − 1), the relationship between the equal-

biaxial stress and stretch is given by the following equation:

σ = G(λ2 − 1
λ4
)eb(2λ2+ 1

λ4
−3)

, [1]

where G and b are two material constants. G can be regarded as
shear modulus of the material and b is a dimensionless param-
eter related to the strain stiffening of the material. By fitting the
prediction from Eq. 1 to the experimental data in Fig. 3D, we
obtain these material constants for this particular BM, as G =
82.30 kPa and b = 2.10. The measured G is consistent with pre-
vious measurements on isolated BMs, for example, the elastic
modulus of corneal BM (80 kPa, which is roughly three times of
the shear modulus for an incompressible solid) (11) and BM
from Drosophila eggs (70 kPa) (12). Moreover, we compare

the predictions of different hyperelastic models with our exper-
imental measurements, in addition to Fung’s model. We find
that Fung’s model gives a better description to the experimental
stress–strain relationship of BMs as compared to several other
models such as neo-Hookean, Mooney–Rivlin model, or the
Gent model (SI Appendix, Fig. S2).
To understand the kinetic properties of the BM, we adopt

Darcy’s law to determine the water flux J passing through the
membrane as J = k

μ
p
h, where k is diffusivity of the membrane

while μ is dynamic viscosity of the fluid. The equations above
enable us to further obtain that σ = μR0

2k λJ. So with knowing the
number μ

2k, we can also obtain the constitutive function σ = σ(λ)
from J = J(λ) shown in Fig. 3C. By choosing μ

2k to be 0.72 kPa · s/μm
2,

the constitutive relation determined from Fig. 3C agrees extremely
well with the constitutive relation shown in Fig. 3D. Finally, with the
dynamic viscosity of the aqueous solution as μ = 1mpa · s, we can
estimate the permeability of the BM k = 6.95 × 10−19 m2. This is
consistent with previous measurement on isolated lens BMs from
bovine eye (22). Furthermore, if we adopt the diffusivity as
D = kG=μ, we can obtain the poroelastic diffusion coefficient D =
5.72 × 10−11 m2/s.
By comparing in situ inflation and deflation curves in experiments

to analytical solution, we can obtain several key materials parame-
ters of the BM, as summarized in SI Appendix, Table S1. We indeed
observe a significant variation of the measured values. These vari-
ations reflect structural and mechanical differences among these
BMs as they are locally produced by each cancer cell spheroid and
thus may vary both BM thickness and membrane structures (11, 23).
The inflation–deflation process reveals the nonlinear elastic

behavior of the BM. From the measured biaxial stress–strain
diagram of BMs shown in Fig. 3 A and D, we observe significant
nonlinearity and strain-stiffening effects. Based on Fung’s model,

Fig. 2. Experimental setup. (A) A schematic of the experimental setup. (B) Spherical BM before (Left) and under the injection at 20 kPa (Middle). (Scale bar,
10 μm.) The inside cell spheroid is predetached from the surrounding BM by several injections. (C) Kymograph of two inflation and deflation processes of the
BM under an injection pressure 20 kPa. (Scale bars, vertically 10 μm and horizontally 5 s.) (D) The measured radius of BM during inflations and deflations under
increased injection pressures.
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we can obtain the stress–strain relationship of the BM under
uniaxial tension as σ = G(λ2 − λ−1)eb(λ2+2λ−1−3). Using the mea-
sured material parameters, we further plot both uniaxial and
equal-biaxial tangent modulus of the BM (defined as K = dσ=d«
with σ representing the true stress and « = lnλ representing the
true strain for either uniaxial or equal-biaxial deformation) as a
function of strain in Fig. 4A. With a slight increase of strain, the
tangent modulus K of BM increases by several times for both
uniaxial and biaxial deformation. This is in direct contrast to the
wide linear elastic regime observed on reconstituted Matrigel
(24, 25), indicating distinct structural characteristics between
natural BMs and Matrigel reconstituted from BM extracts. In-
deed, clear fibrous network structures can be observed in the
intact BMs, as shown by the TEM images in Fig. 1C. These fi-
brous networks of biopolymers are known to cause a strong,
nonlinear stiffening effect (26), due to various mechanisms in-
cluding entropic elasticity of individual filaments, geometric

effects due to fiber bending and buckling, and collective network
effects governed by critical phenomena (27–33).
Strain stiffening of soft biological tissues has been widely ob-

served and known to play important yet different roles in various
biological processes (24, 34, 35). Herein, we discuss the possible
effect of the strain stiffening of BMs on their functions. It has
been well known that a hyperelastic balloon under inflation often
suffers from snap-through instability when the internal pressure
or the radial expansion is beyond a critical value (36–38). Fig. 4B
plots the relationship between the inflating pressure and the radial
expansion of a balloon made up of a neo-Hookean membrane (such
as a latex membrane). The relationship between the internal pres-
sure and the radial expansion of the balloon is nonmonotonic, and
there is a peak pressure with a corresponding critical radial ex-
pansion: λ=1.38. As a result, when the radial expansion ratio rea-
ches the critical value, the balloon can dramatically increase its size
without requiring a further increase of the pressure, as shown by the
horizontal line in Fig. 4B. For a latex balloon, such drastic expansion
during the snap-through process often leads to rupture. More in-
terestingly, if the volume of the balloon is controlled to increase
gradually, the internal pressure drops with the further increase of
the volume after the balloon expansion exceeds the critical value. If
the mechanical behavior of the BM is similar to that of a latex
balloon, after the radial expansion of the BM exceeds 1.38, further
growth of tissue inside (such as a tumor) reduces mechanical con-
straint from the BM, which may lead to irregular tissue morphology
or rapid tumor expansion (39).
It is worth noting that the nonmonotonic relationship between

the inflating pressure and radial expansion of a hyperelastic
balloon (and the resulting snap-through instability) is not a
consequence of special mechanical properties of the material.
Instead, it is due to the significant reduction of the balloon
thickness with its radial expansion. So, the descending part of the
pressure versus the radial expansion curve (for a neo-Hookean
elastomeric balloon) in Fig. 4B can be referred to as geometrical
softening. One way to avert such snap-through instability is to in-
troduce significant strain stiffening in the material at relatively small
deformation (with biaxial stretch smaller than the critical stretch:
1.38) to compensate the geometrical softening effect. As shown in
Fig. 4A, the BM indeed exhibits a strong strain-stiffening effect
starting at a small deformation. As a result, the relationship be-
tween the inflating pressure and the radial expansion of the BM is
monotonic, and snap-through instability does not occur, as shown in
Figs. 3A and 4B. These results indicate the importance of the
nonlinear elasticity of BMs in maintaining tissue mechanical in-
tegrity during growth and development. In the following, we will
further elaborate the necessary strain stiffening of the material for
preventing snap-through instability of the balloon.

Fig. 3. Mechanical and kinetic properties of BM determined from experi-
mental results. (A) The stretch of the membrane at steady state (maximum
stretch) for different injection pressure. (B) Deflation curves in term of radial
expansion λ = r=R0 at varying injection pressure. (C) Fluid flux of BM as a
function of the stretch of the membrane. During the deflation, fluid flux
J = dr=dt. Insert, schematics of BM: inner fluid pressure, p; biaxial stress on
spherical membrane, σ; fluid flux, J. (D) Constitutive behavior of the BM
obtained from (A) by using R0 = 32.5μm and H = 2.5μm. The dashed curve is
the fitting result from Fung’s model. Using Darcy’s law, we can convert the
fluid flux curve in C to the constitutive relation of the BM with the fitted
permeability of the membrane k = 6.95 × 10−19 m2.

Fig. 4. Nonlinear elastic behavior of BMs. (A) Tangent modulus of BMs (defined in the text) as a function of true strain for equal-biaxial tension and uniaxial tension.
(B) The relationship between the inflating pressure as a function of radial expansion of a balloon made up of a neo-Hookean material compared to that of BMs. (C) If
the strain-stiffening curve of the material such as BM does not intersect the dashed line (K = 3σ), snap-through instability can be avoided. If the strain-stiffening curve
of the material, such as neo-Hookean material or linear elastic material, intersect with the dashed line, snap-through instability of the balloon can occur. It is noted
that in C, both of the tangent modulus and stress are normalized by the tangent modulus of the material in free-standing state.
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To avoid the snap-through or structural softening of a balloon,
the relationship between the internal pressure and its radial ex-
pansion needs to be monotonic, namely dp=dλ> 0. With the ma-
terial incompressibility and force balance, we can show that the
condition above is equivalent to K > 3σ, where K is biaxial tangent
modulus defined above and σ is the true equal-biaxial stress. In
Fig. 4C, K = 3σ is shown by the dashed line. We can also plot bi-
axial tangent modulus as a function of the true biaxial stress for
different hyperelastic material models in Fig. 4C. For a hyperelastic
material whose strain stiffening is significant enough like the BM, its
strain-stiffening curve does not intersect the dashed line (K = 3σ),
as shown in Fig. 4C; therefore, snap-through instability or structural
softening can be prevented. In contrast, if the strain-stiffening curve
intersects the dashed line (e.g., for neo-Hookean material marked
or materials with no strain-stiffening effect), snap-through instability
or structural softening occurs. It is noted that using the fitted pa-
rameters of the BM as shown above, we predict the mechanical
behavior of the BM with the deformation much larger than the one
shown in the experiment, which may be beyond the rupturing point
of the BM.

Discussion
In this work, we introduce a facile method based on inflation–
deflation experiments to in situ measure the mechanics of BM in
breast cancer spheroid. We find that BMs can be well captured
as a permeable hyperelastic material. As the inflation pressure is
released, the inflated BM fully returns to its initial state; this
outstanding elastic property may provide mechanical protection
to its internal structures. Moreover, the inflation–deflation
method we introduce here explores the global mechanics of
BMs, in contrast to other local measurements on fragmented
BM such as AFM. Two critical mechanical properties, elastic
modulus and permeability, can be directly determined from the
deflation process independent of specific material models. We
believe this is an important advantage of the current inflation–
deflation method compared with other methods such as inden-
tation test. For an indentation test, a specific constitutive model
for the BM has to be assumed in the first place to enable the
conversion of the experimental measurements (e.g., indentation
force versus indentation depth) to the stress–strain relationship
of a BM. Justifying an appropriate selection of the constitutive
model can be very challenging given the highly nonlinear elastic
behavior and the poroelastic nature of BMs. Consequently, such
justification is often missing or inadequate in the previous
studies. Thus, the inflation–deflation method developed in the
current work may be used to measure mechanics of intact BMs in
different systems and during both healthy and disease states.
Furthermore, our in situ measurement reveals marked non-

linear elasticity of the BMs whose onset is below 10% of strain.
This behavior is in direct contrast to the large linear elastic re-
gime observed in reconstituted Matrigel (24, 25) yet is consistent
with a wide variety of biological tissues and biopolymer networks
(26, 40, 41). This nonlinear stiffening behavior of the BM may
have an important role in maintaining tissue mechanical integrity
during growth and deformation (e.g., to avoid structural insta-
bility), which is a classical behavior leading to drastic expansion
or even rupture when inflating most elastomeric balloons.

Materials and Methods
Cancer Spheroid Culture and Isolation. The human breast cancer MDA-MB-231
cells (ATCC) are cultured in Dulbecco’s Modified Eagle Medium (Gibco) with
10% fetal bovine serum (Gibco) and 1% penicillin–streptomycin (Gibco) at
37 °C with 5% CO2. The individual cells at the log phase are seeded onto the
gelled Matrigel bed (10 mg/mL, Corning, 354234) and are cultured to allow
proliferation for 5 d to form clusters. Culture medium supplemented with
0.2 mg/mL Matrigel is replaced every 2 d. BM is secreted and generated by
cells during the growth of these multicellular cancer spheroids.

To isolate these cancer spheroids, samples are placed in ice-cold PBS to
break down the Matrigel, and then centrifuged at 100 g to remove the
supernatant Matrigel fragments. The intact cancer spheroids out of Matrigel
are collected by resuspending them in PBS and are then seeded on a glass-
bottom Petri-dish for immunofluorescence staining or microinjection
experiments.

Immunofluorescence Staining. The isolated cancer spheroids are firstly fixed
with 4% paraformaldehyde at room temperature for 30 min. Then, the
spheroids are permeabilized with 0.2% Triton X-100 in PBS for 15 min. After
that, the samples are blocked with 5% bovine serum albumin (BSA) in PBS
for 1 h at room temperature and subsequently incubated with the primary
antibody for laminin-5 (1:100 in PBS with 0.1% BSA, Santa Cruz Biotech-
nology, sc-13578) overnight at 4 °C. The samples are then incubated with the
second antibody Alexa-488 goat anti-mouse (1:300, Thermo Fisher, A-11001)
for 1 h at room temperature in darkness. The nuclei are stained with Hoechst
33342 (Sigma, 14533) before imaged under a confocal microscopy
(Leica SP8).

Microinjection. The FemtoJet microjector (5248, Eppendorf) is mounted on a
confocal microcopy (Lecia TCL SP8) equipped with a 25× water-immersed
objective (0.9 numerical aperture) and a cage incubator (37 °C, Okolab). A
glass-made microneedle (2 μm in diameter, Eppendorf) is loaded with PBS
buffer. Then it is manipulated to penetrate the surrounding BM, placing the
needle tip inside the spheroid. To perform an inflation–deflation cycle, the
injection pressure and its duration are predefined in the microinjector con-
necting to the microneedle. After manually starting the injection protocol,
the BM would quickly inflate to a steady state, and then gradually deflate
back to its initial size. Under each pressure, two or more inflation–deflation
cycles are performed for one sample. Bright-field imaging at 14 Hz is applied
to record the shape and size of a BM. From the recorded movies, the radius
of BMs is determined by using a customized algorithm in MATALB.

Electron Microscopy. The sample preparation follows a previously established
protocol (20). Briefly, the cancer spheroids cultured on a Matrigel bed are
fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate for 1 h. Then,
samples are postfixed by 1% osmium tetroxide in 0.1 M sodium cacodylate
at 4 °C for 30 min and dehydrated in graded ethanol. After that, the samples
are embedded in epoxy resin, followed by sectioning. Only cross-sections of
the spheroid above the Matrigel surface are collected and stained with 1.4%
uranyl acetate and then with lead citrate. Sections are imaged with a Hitachi
H-7650. The BM thicknesses are measured from the TEM images by
using ImageJ.

Data Availability. All study data are included in the article and/or supporting
information.
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